<u>Problem</u>: In a medical test for a certain molecule, the concentration in the blood is reported as 123 mcg/dL. What is the concentration in proper SI notation?

Solution: Convert both units in the numerator and the denominator to single-prefixed units and rewrite the constant using scientific notation with one place to the left of the decimal as follows:

concentration := 123

milicentigram/deciliter, Concentration as
given in problem

$$\operatorname{concSI} := \frac{\operatorname{concentration} \cdot 10^{-3} \times 10^{-2}}{10^{-1} \cdot 10^{-3}}$$

grams/milliliter, Concentration in proper SI units

concsi = 12.3

g/ml, Concentration in blood

This concludes the problem solution for Homework Problem 1.4!

 $[HW_1_4.xmcd]$

Homework 1.11

Problem: Estimate the number of atoms in a 3000 lbf automobile. State any assumptions you make.

Solution: First, we will assume that the atom density is approximately 10²² atoms per cm³ in accordance with the estimate given in section 1.2.5 of the text. Next we will assume that the total volume of a 3000 lb_f automobile may be approximated by those exterior dimensions given below times 2/3 to account for the shortened height measurement at the hood and trunk areas. The number of atoms can then be approximated as follows:

2006 Optima EX Sedan Curb Weight - Automatic (lb.) 3179.1 Wheelbase (in.) 107.1 Length (in.) 186.4 Width (in.) 71.1 Height (in.) 58.3 Track Front (in.) 61.5 Track Rear (in.) 61.1

VolOptima := $\frac{2}{3} \cdot (186.4 \cdot 71.1 \cdot 58.3) \cdot 2.54^3$ cm³, Approximate volume of car

Nad := 10^{22} atoms/cm³, Atomic density (assumed)

Numatoms := VolOptima · Nad Estimated number of atoms in car

Numatoms = 8.441×10^{28}

This concludes the problem solution for Homework Problem 1.11!

[HW 1 11.xmcd]

<u>Problem</u>: A reactor is fueled with 4 kg uranium enriched to 20 atom-percent in 235 U. The remainder of the fuel is 238 U. The fuel has a mass density of 19.2 g/cm³.

(a) What is the mass of ^{235}U in the reactor?

(b) What are the atom densities of ^{235}U and ^{238}U in the fuel?

<u>Solution</u>: The atom density may be found utilizing Eq. (1.5) as follows:

- Pfuel ≔ 19.2 g/cm³, Mass density of
 fuel
- $m_{fuel} := 4 \cdot 10^3$ g, mass of fuel
- $\gamma U_{235} := 0.20$ atom percent of ^{235}U in fuel
- $\gamma U_{238} := 0.80$ atom percent of ²³⁸U in fuel
- $N_a := 0.6022 \cdot 10^{24}$ atoms/mole, Avogadro's number
- AU235 := 235.0439231 g/mole, Gram atomic weight of ²³⁵U
- AU238 := 238.0507826 g/mole, Gram atomic weight of ²³⁵U
- $\label{eq:Afuel} A_{fuel} \coloneqq \gamma \\ U235 \cdot \\ AU235 + \gamma \\ U238 \cdot \\ AU238 \\ G/mole, \ \\ Gram \ \\ atomic \ \\ weight \ of \ \\ this \ \\ mix \ of \ \\ uranium \ \\ fuel \\ \end{array}$

A_{fuel} = 237.4494

 $MatomU_{235} := \frac{AU_{235}}{N_{a}}$

g/atom, Mass of ²³⁵U atom

Matom $U_{235} = 3.9030873978744607 \times 10^{-22}$

NatomsU235 := $\frac{m_{fuel} \cdot N_a \cdot \gamma U235}{A_{fuel}}$	atoms of ²³⁵ U in fue	l sample
NatomsU235 = 2.0289×10^{24}		
mU235 := MatomU235·NatomsU2	235 g, Mass of ²³⁵ U in	fuel sample
mU235 = 791.8956		
$WU235 := \frac{mU235}{m_{fuel}}$ mass fr	raction of ^{235}U	WU235 = 0.198
$wU238 \coloneqq \frac{m_{fuel} - mU235}{m_{fuel}}$	mass fraction of ²³⁸ U	WU238 = 0.802
$NU235 \coloneqq \frac{WU235 \cdot \rho_{fuel} \cdot N_a}{AU235}$	atoms/cm ³ , Atom density c mix	f ²³⁵ U in fuel
$NU_{235} = 9.7387 \times 10^{21}$		
$NU238 := \frac{WU238 \cdot \rho_{fuel} \cdot N_a}{AU238}$	atoms/cm ³ , Atom density c mix	f ²³⁸ U in fuel
$NU238 = 3.8955 \times 10^{22}$		

This concludes the problem solution for Homework Problem 1.13! [HW_1_13.xmcd]

Homework 1.15

<u>Problem</u>: A crystal of **NaI** has a density of 2.17 g/cm³. What is the atom density of sodium in the crystal?

Solution: The solution is as follows:

 $\rho_{Nal} := 2.17$ g/cm³, Mass density of Nal

 $N_a := 0.6022 \cdot 10^{24}$ atoms/mole, Avogadro's number

ANa := 22.989770 g/mole, Gram atomic weight of Na

AI := 126.90447 g/mole, Gram atomic weight of I

ANal := ANa + Al g/mole, Gram molecular weight of Nal

 $A_{Nal} = 149.8942$

Because the atom density of Na or I in NaI will be the same as the molecular density, we may use Eq. (1.4) to figure the molecular density of NaI as follows:

$$N_{Nal} := \frac{\rho_{Nal} \cdot N_a}{A_{Nal}}$$
 molecules/cm³, Molecular density of Nal

NNa := NNal atoms/cm³, Atomic density of Na

 $N_{Na} = 8.718 \times 10^{21}$

This concludes the problem solution for Homework Problem 1.15! [HW_1_15.xmcd]

<u>Problem</u>: A concrete with a density of 2.35 g/cm³ has a hydrogen content of 0.0085 weight fraction. What is the atom density of hydrogen in the concrete?

Solution: The solution using Eq. (1.5) is as follows:

ρ := 2.35	g/cm ³ , Mass density of concrete
wH := 0.0085	Weight fraction of hydrogen in concrete
$N_a := 0.6022 \cdot 10^{24}$	atoms/mole, Avogadro's number
Аң := 1.00794	g/mole, Gram atomic weight of H
$N_{H} := \frac{w_{H} \cdot \rho \cdot N_{a}}{A_{H}}$	atoms/cm ³ , Atomic density of ${\tt H}$ in concrete

 $N_{\rm H} = 1.1934 \times 10^{22}$

This concludes the problem solution for Homework Problem 1.16! [HW_1_16.xmcd]